M.Tech. Program from Department of Mechanical Engineering

M. Tech. in Mechanical Design Semester wise detailed syllabus

Sl. No.	Subject Code	SEMESTER I	L	Т	Р	С
1.	HS5111	Technical Writing and Soft Skill	1	2	2	4
2.	ME5101	Advanced Engineering Mathematics	3	1	0	4
3.	ME5102	Theory of Elasticity	3	0	0	3
4.	ME5103	Finite Element Analysis	3	0	0	3
5.	ME5104	Design Lab - I	0	0	3	1.5
6.	ME61XX	DE-I	3	0	0	3
7.	ME61XX	DE-II	3	0	0	3
8.	XX61PQ	IDE	3	0	0	3
		TOTAL	19	3	5	24.5

Course Number	ME5101
Course Credit	L-T-P-C: 3-1-0-4
Course Title	Advanced Engineering Mathematics
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 1-4.
Objectives	• This course aims to train the students with the basic and advanced
	mathematical tools required to solve engineering problems.
	• Showcase the utility of mathematics towards the analysis of real-world engineering problems.
Course	This course is designed to fulfil the need for basic and advanced mathematics
Description	concepts often used in real-life engineering problems.
	Prerequisite: NIL
Course Outline	Linear Algebra: Matrix algebra; basis, dimension and fundamental subspaces;
	solvability of $Ax = b$ by direct Methods; orthogonality and QR transformation;
	eigenvalues and eigenvectors, similarity transformation, singular value
	decomposition, Fourier series, Fourier Transformation, FFT.
	vector Algebra & Calculus: Basic vector algebra; curves; grad, div, curi, line,
	divergence theorem
	Differential Equations: ODE: homogeneous and non-homogeneous equations
	Wronskian Laplace transform series solutions Frobenius method Sturm-
	Liouville problems: PDE: separation of variables and solution by Fourier
	Series and Transformations, PDE with variable coefficient.
	Numerical Technique: Numerical integration and differentiation; Methods for
	solution of Initial Value Problems, finite difference methods for ODE and
	PDE; iterative methods: Jacobi, Gauss-Siedel, and successive over-relaxation.
	Complex Number Theory: Analytic function; Cauchy's integral theorem.
	Statistical Methods: Descriptive statistics and data analysis, correlation and
	regression, probability distribution.
Learning	• This course would enable the students to solve the mathematical
Outcome	governing equations of engineering problems.
	• The students would be able to realise the connection of Mathematics
	with Physics and Engineering.
Assessment	Mid Semester Examination, End Semester examination, Class test & quiz,
Niethod	Assignment, Class Performance and Viva

Suggested Readings:

Text Books:

- 1. H. Kreyszig, "Advanced Engineering Mathematics", Wiley, (2006).
- 2. Gilbert Strang, "Linear Algebra and Its Applications", 4th edition, Thomson Brooks/Cole, India (2006).
- 3. J. W. Brown and R. V. Churchill, "Complex Variables and Applications", McGraw-Hill Companies, Inc., New York (2004).
- 4. J. W. Brown and R. V. Churchill, "Fourier Series and Boundary Value Problems", McGraw-Hill Companies, Inc., New York (2009).
- 5. G. F. Simmons, "Differential Equations with Applications and Historical Notes", Tata McGraw-Hill Edition, India (2003).
- 6. S. L. Ross, "Differential Equations" 3rd edition, John Wiley & Sons, Inc., India (2004).
- 7. K. S. Rao, "Introduction to Partial Differential Equations", PHI Learning Pvt. Ltd (2005).
- 8. R. Courant and F. John, "Introduction to Calculus and Analysis, Volume I and II", Springer-Verlag, New York, Inc. (1989).

- 9. K. Atkinson and W. Han, "Elementary Numerical Analysis" 3rd edition, John Wiley & Sons, Inc., India (2004).
- 10. R. A. Johnson and G. K. Bhattacharya, "Statistics, Principles and Methods", Wiley (2008).
- 11. Michael D Greenberg, "Advanced Engineering Mathematics", 2nd Edition, Pearson (1998).
- 12. R.K. Jain and S. R. K. Iyengar, "Advanced Engineering Mathematics" 4th Edition, Narosa; 1st Edition (2002).

Course Number	ME5102
Course Credit	L-T-P-Cr : 3-0-0-3
Course Title	Theory of Elasticity
Learning Mode	Classroom Lecture
Learning	
Objectives	Complies with PLOS 1 and 3. The analytical and mathematical concents of elasticity and their applications
	in a wide range of engineering problems will be taught in this course
Course	This course is designed to fulfil an understanding of theories of linear and
Description	non-linear elasticity stress and strain tensors equilibrium and compatibility
Description	equations analytically and numerically solving elasticity problems and the
	concept of energy principles and stress functions
	concept of energy principles and success functions.
	Prerequisite : Knowledge of solid mechanics or equivalent course
Course Outline	Stress and strain tensors, equations of equilibrium and compatibility in
	rectangular and curvilinear coordinates, Cauchy's formula, stress
	transformation, principal stresses, Lame's stress ellipsoid, Cauchy stress
	quadratic, octahedral stress, stress-strain relations, basic equations of
	elasticity, Boundary value problem, Uniqueness of solutions, Torsion of non-
	circular sections, St. Venant's theory of torsion, Scalar and Vector potentials,
	Strain potentials. Plane state of stress and strain, Airy's stress function for
	problems, Representation of biharmonic function using complex variables,
	Kolosoff-Mushkelishvili method. Thermal stress, Applications to problems
	of curved beam, thick cylinder and rotating disc, stress concentration.
	Introduction to numerical methods in elasticity. Contact problems,
	Introduction to Viscoelasticity and plasticity, energy and variational
	principles in theory of elasticity.
Learning	• Understanding stress and strain tensors, equilibrium and compatibility
Outcome	equations, and concept of boundary conditions develop a mathematical
	foundation of elasticity theories.
	• Ability to solve linear and non-linear elasticity problems by analytical and
	• Understanding the use of energy principles and stress functions in solving
	elasticity problems.
Assessment	Class tests, quizzes, projects (Case Studies), mid-semester and end semester
Method	Examinations.
Suggested Reading	gs:
Text Books:	
1. S.P. Timoshenko	and J.N. Goodier, Theory of Elasticity, Tata McGraw-Hill, 2010.

- 2. L.S. Srinath, Advanced Solid Mechanics, Tata McGraw-Hill, 2002.
- 3. I.S. Sokolnikoff, Mathematical Theory of Elasticity, 2nd Ed., McGraw-Hill, 1956.
- 4. Y.C. Fung, Foundations of Solid Mechanics, Prentice-Hall, 1965.
- 5. Theory of Plasticity by Jagabanduhu Chakrabarty, Butterworth-Heinemann; 3rd edition, 2006.
- 6. Introduction to Computational Plasticity by Fionn Dunne and Nik Petrinic, OUP Oxford, 2005.

Course Number	ME5103
Course Credit	L-T-P-Cr : 3-0-0-3
Course Title	Finite Element Analysis
Learning Mode	Classroom Lecture
Learning	Complies with PLO 4
Objectives	This course aims to provide the mathematical concepts and detailed algorithm of finite element method and its applications in wide range of
	engineering problems.
Course	This course on FEM discusses all the important topics starting from
Description	fundamentals and mathematical modeling of boundary value problems,
	initial value problem and Eigenvalue problems in one and two-dimensional
	domains. Formulations for different element such as constant strain triangles,
	static analysis and Eigenvalue problems in one and two dimensional
	domains Formulations for different elements such as constant strain
	triangles, isoparametric elements and numerical integration, beams and
	frames, linear static analysis, Dynamic analysis, Thermal analysis, Buckling
	analysis, scalar field problems, pre-processing and post processing
Course Outline	Basic Concepts: Introduction, weak formulations, variational formulations,
	weighted residual method, Rayleigh-Ritz and Galerkin's method.
	One Dimensional Problems: Second-order differential equations in one
	dimension, Basis steps, discretization, assembly, local and global stiffness
	matrix and its properties, boundary conditions, multipoint constraints,
	applications to: solid mechanics heat transfer and fluid mechanics,
	Electromagnetic problems, axisymmetric problems
	Trusses, Beams and Frames: Plane truss, local and global coordinate
	systems, stress calculations, temperature effect on truss members, Euler
	Bernoulli beam element, C^0 and C^1 elements, Hermite cubic spline functions,
	frame element, Numerical examples, Case Studies.
	Eigen Value and Time dependent problems : Formulation, FEM models,
	semidiscrete FEM models, method and Newmark scheme, Applications,
	Scalar Field Problems: Single variables in 2 D heat transfer notantial flow
	problems Electromagnetic impositions of BCs. Numerical examples
	Convergence and error: Energy and L ₂ norm accuracy and error stability
	Two Dimensional Problems : Constant strain triangle isonarametric
	formulation master elements higher order elements serendinity elements
	hybrid element quaterpoint element modelling considerations, mesh
	generation, numerical integration, reduced integration, <i>computer</i>
	<i>implementation</i> : heat transfer in thin fins, 2D plane stress/plain strain.
	Modelling considerations: Element Geometries. Mesh Generation. Load
	representation, Discussion on Plane stress, plane strain, plate, membrane,
	Thin Shell elements
	Post Processing Techniques: Viewing of results, Average and unaverage
	stress, Interpretation of results.
	Limitations with FEM: Introduction of Meshfree Methods, XFEM, Phase
	Filed Modelling, Application

Learning Outcome	 Ability to mathematically formulate and <i>solve</i> Multiphysics problem: Solid, Thermal, Fluid, etc. Analytical ability to interpreter the results involving linear static analysis, Dynamic analysis, Thermal analysis, Buckling analysis etc. Understanding and working of FEA commercial tools ANSYS/ABAQUES/COMSOL 				
Assessment	Class tests, quiz, Project (By using commercial software/developing own				
Niethod Suggested Deedin	FEA code), who semester and End semester Examination.				
Suggested Keadings:					
[1] Reddy, J.N. 2005.	 Reddy, J.N., "An Introduction to Finite Element Methods", 3rd Ed., Tata McGraw-Hill. 2005. 				
Reference Books:					
[2] Zienkiewicz[3] Cook, K.D., Analysis", 3	, O. C. "The Finite Element Method, 3rd Edition, Tata McGraw-Hill. 2002. Malkus, D.S. and Plesha, M.E., "Concept and Applications of Finite Element th Ed., John Wiley and Sons. 1989.				
[4] Rao, S.S., "	The Finite Element Method in Engineering", 4th Ed., Elsevier Science. 2005.				
[5] Reddy, J.N. Dynamics",	5] Reddy, J.N. and Gartling, D.K "The Finite Element Method in Heat Transfer and Fluid Dynamics", 2rd Ed., CRC Press. 2001.				
[6] Fish, J. and Sons. 2007.	1, J. and Belytschko, T., "A First Course in Finite Elements", 1st Ed., John Wiley and				
[7] Chaskalovic 2008.	, J., "Finite Element Methods for Engineering Sciences", 1st Ed., Springer.				
[8] Bathe, K. J.,	"Finite Element Procedures", 1st Ed., Cambridge Press				

Course Number	ME5104				
Course Credit	L-T-P-Cr : 0-0-3-1.5				
Course Title	Design Lab - I				
Learning Mode	Laboratory experiments				
Learning	Complies with PLOs 3 and 4.				
Objectives	Understanding of Data Acquisition System, Signal Processing, Assembly,				
	Running and safety procedures of dynamic machinery such as rotor, motor,				
	brakes, clutches etc.				
Course					
Description	Prerequisite: NIL				
Course Outline	1) DAQ and its components, feedback motion control of DC				
	motor, low pass andhigh pass filters, spectrum analysis.				
	2) Fault Detection in Rotating Machinery.				
	3) Electrical motor current signature analysis on Machine Fault Simulator				
	 Experimental investigation of Oil whirl-Oil whip in Machine Fault Simulator 				
	5) Study of Air Bearing apparatus and its onset whirl				
	6) Experimental investigation of Rider's comfort through Active mass suspension				
	7) To determine the frequency response function of a Cantilever Beam				
	8) To measure the sound pressure level of shop floor/machine with				
	different weighting scale and validation of inverse proportionality				
	law				
	9) Dynamic Balancing (on MFS) and Fleid balancing of Rolating machinery 10) Experimental setup built by students themselves (a precursor to M Tech				
	project				
	11) Use of standards for experiments.				
Learning	Understanding of rotating machinery performance, balancing, performance				
Outcome	of tribological elements, Design and fabrication of signal proces				
	resources, Report writing.				
Assessment	Experiment (40%), Report (10%), Quiz (20%), Viva (30%)				
Method					

Texts Books:

- 1. Beckwith T. G., Marangoni, R. D., and Lienhard, J. H., Mechanical Measurements, 5e, Addison Wesley, 1993.
- Dally, Riley, and McConnell, Instrumentation for engineering measurements, 2e, John Wiley & Sons., 1993.
- 3. Figiola, R.S. and Beasley, D.E., Theory and design for mechanical measurements, 2(e), John Wiley, 1995.

	Department Elective - I					
Sl. No.	Subject Code	Subject	L	Т	Р	С
1.	ME6105	Acoustics	3	0	0	3
2.	ME6106	Mobile Robotics	3	0	0	3
3.	ME6107	Digital Manufacturing and Industry 4.0	3	0	0	3
4.	ME6108	Wear & Lubrication of Machine Components	3	0	0	3

Course Number	ME6105			
Course Credit	L-T-P-Cr: 3-0-0-3			
Course Title	Acoustics			
Learning Mode	Classroom Lecture			
Learning	Complies with PLOs 3 and 4			
Objectives	This course aims to develop an understanding of (a) The basics of the			
	phenomenon of Acoustics (b) Mathematical modelling of the linear			
	phenomenon (c) Application of the models for understanding basic acoustics			
	systems such as Resonators, Filters and Ducts etc. (d) Understanding of			
	Environmental acoustics, Community noise, Arcintectural noise, Underwater			
Course	To provide the concepts of acoustics and its applications in wide range of			
Description	engineering problems			
Description	engineering problems.			
	Prerequisite: NIL			
Course Outline	Acoustics: Objective-Understanding of Vibration Sound Noise			
course caunie	Mathematical basics for Acoustics- PDE. Vectors, divergence (Greens)			
	theorem, Stokes theorem, Signal processing. Development of Wave			
	equation, Helmholtz equation. Acoustic wave equation- Plane waves,			
	Acoustic -Power, Intensity & measurement. Transmission, Absorption			
	and attenuation of sound waves in fluids, Spherical Waves, monopole,			
	dipole, quadropole and piston radiator. Radiation and Reception of			
	Acoustic waves. Active sound control Pipes, Cavities, Waveguides,			
	Resonators, Filters and Ducts- Plane Waves, energy dissipation, finite			
	amplitudes and transmission phenomena, horn radiator, muttlers,			
	silencers Noise, signal detection, hearings and Speech-Noise spectrum			
	and band level, combining band levels and Tones, Detecting signal in poise. Detection threshold, Far Thresholds, Equal loudness, level			
	contours Critical handwidth Masking Loudness level Pitch and			
	frequency Environmental Acoustics- weighted Sound levels Speech			
	interference Criteria for Community noise Highway noise Aircraft			
	noise rating Hearing loss Legislations for Noise control Architectural			
	acoustics Reverberation time. Sound Absorption materials. Direct and			
	Reverberant Live rooms. Acoustic factors in design Transduction-			
	transducers/transmitters- anti reciprocal, reciprocal. Loudspeakers,			
	Microphones. Introduction to Underwater Acoustics. Use of standards			
	for design.			
Learning	Analysis of Acoustic phenomenon for modeling systems with linear acoustics			
Outcome	Understanding and designing systems such as mufflers, resonators, filters			
	ducts, loudspeakers, microphones etc.			
	Understanding the effect of Acoustics- Community noise, Automotive noise,			
	Architectural acoustics etc			
Assessment	Mid Semester Examination (30%), End Semester examination (50%), Class			
Method	test & quiz (10%), Assignment (10%)			
Suggested Readings:				
Text Books:				
1. Fundamental of Physical Acoustics, David I Black Stock, John Wiley & Sons, Inc, 2000				
2. Noise and V	bration Control Engineering: Principles and Applications Leo L. Beranek,			
JUIII WIEV & JUIS, IIC, 2003 3 Handbook of Noise and Vibration Control adited by Malacim I. Creaker, John Wiley				
5. nanudook of Noise and vibration Control edited by Malcolm J. Crocker, John Wiley				

& Sons,Inc., New York, 2007.

Cours	se Number	ME6106			
Cours	se Credit	L-T-P-Cr · 3-0-0-3			
Course Title Mobile Robotics		Mobile Robotics			
Learn	Learning Mode Classroom Lecture				
Learn	ning	Complies with PLOs 1 and 4			
 Objectives This course will present various aspects of design, fabrication motion planning, and control of intelligent mobile robotic sy This course presents computational aspects and practical implementation issues and thereby leads to a well rounded tr 					
Cours	se	This course is designed to introduce students to the concepts of Mobile			
Description Robotics. The course will provide theoretical background as well as the students to practical aspects of Mobile Robotics. Description Representation of the students to practical aspects of Mobile Robotics.					
Cours	se Outline	Robot locomotion: Types of locomotion hopping robots legged robots			
Course Outline		 Kobot tocontotion: Types of tocontotion, hopping tobots, legged tobots, wheeled robots, stability, manoeuvrability, controllability Mobile robot kinematics and dynamics: Forward and inverse kinematics, holonomic and nonholonomic constraints, kinematic models of simple car and legged robots, dynamics simulation of mobile robots Perception: Proprioceptive/Exteroceptive and passive/active sensors, performance measures of sensors, sensors for mobile robots like global positioning system (GPS), Doppler effect-based sensors, vision based sensors, uncertainty in sensing, filtering Localization: Odometric position estimation, belief representation, probabilistic mapping, Markov localization, Bayesian localization, Kalman localization, positioning beacon systems Introduction to planning and navigation: path planning algorithms based on A-star, probabilistic roadmaps (PRM), Markov Decision Processes (MDP), and stochastic dynamic programming (SDP). 			
Learn	ning	After completing this course, the students will be able to design and			
Outco	ome	fabricate a mobile robotic platform and program it to apply learned			
		theoretical concepts in practice.			
Asses	ssment	Mid Semester Examination, End Semester examination, Class test & quiz,			
Meth	od	Assignment with simulation and hardware building exercises.			
Sugg	ested Reading	gs:			
Text	/ Reference B	ooks:			
[1]	R. Siegwart, I. R. Nourbakhsh, "Introduction to Autonomous Mobile Robots", The MI Press, 2011.				
[2] Peter Corke, Springer Trac		, Robotics, Vision and Control: Fundamental Algorithms in MATLAB, cts in Advanced Robotics 2011			
[3] S. M. LaValle, "Plannin		lle, "Planning Algorithms", Cambridge University Press. 2006. (Available			
online http://planning.cs.uiuc.edu/)		planning.cs.uiuc.edu/)			
[4] Thrun, S., Burgard, W., and Fox, D., Probabilistic Robotics. MIT Press, Cambrid 2005.		urgard, W., and Fox, D., Probabilistic Robotics. MIT Press, Cambridge, MA,			
[5] Melgar, E. R. 2012.		., Diez, C. C., Arduino and Kinect Projects: Design, Build, Blow Their Minds,			

Course Number	ME6107
Course Credit	L-T-P-Cr : 3-0-0-3
Course Title	Digital Manufacturing and Industry 4.0
Learning Mode	Classroom Lecture
Learning	Complies with PLO 1
Objectives	
	• This course will present various aspects of digital manufacture
	systems and industry 4.0 with smart and connected business
	perspective.
	• This course presents data analytics for digital manufacturing and
	practical implementation issues for cyber physical systems and
	thereby leads to a well-rounded training.
	• This course will also give theoretical and practical knowledge on
	unmanned aerial vehicle or drone technology, automatic guided
	vehicles and collaborative robotics essential for industry 4.0
Course	This course is designed to discuss t various aspects of digital manufacture
Description	systems and industry 4.0 with smart and connected business perspective. The
	course will describe required tools for cyber physical systems development.
	This course will also give theoretical and practical knowledge on unmanned
	aerial vehicle or drone technology, automatic guided vehicles and
	collaborative robotics essential for industry 4.0
	Prerequisite: nil
Course Outline	Digital Manufacturing: theory and industrial applications; Project planning
	and project management with digital tools; Digital configuration and
	architecture; Digital manufacturing system modelling, simulation and
	analysis
	Industry 4.0: Globalization and emerging issues, the fourth revolution, LEAN
	production systems, smart and connected business perspective, smart
	factories; Cyber Physical Systems and next generation sensors; Collaborative
	platform and product lifecycle management; Augmented Reality and Virtual
	Reality; Machine Learning and Artificial Intelligence in Manufacturing;
	Industrial Sensing & Actuation; Industrial Internet Systems
	Automation and Robotic solution under the umbrella of Industry 4.0:
	Applications of Unmanned Aerial Vehicles (UAVs), Autonomous Guided
	Venicles (AGV); Understanding the application scenarios of UAVs and
	AGVS for manufacturing; Key components of UAV and AGV - Sensor &
Learning	After completing this course, the students will be able to develop disited twing
Dutaama	After completing this course, the students will be able to develop digital twins
Outcome	for implementation of collaborative industry 4.0 platforms in practice
Assassment	Mid Somester Examination End Somester examination Class tests
Method	Assignments
Suggested Readings	·
Reference Rooks	•

- [1] M.P. Groover, "Automation, Production Systems and Computer Integrated manufacturing", 4th Edition, Pearson Education (2016)
- [2] Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad, "Autonomous Guided Vehicles: Methods and Models for Optimal Path Planning", Springer, 2015.
- [3] K Kumar, D Zindani and J P Davim, "Digital Manufacturing and Assembly Systems in Industry 4.0," CRC Press, 2019

- [4] J P Davim, "Manufacturing in Digital Industries: Prospects for Industry 4.0", De Gruyter, 2020
- [5] P. K. Garg, "Introduction To Unmanned Aerial Vehicles," New Age International Private Limited; First edition, 2020
- [6] S.K., Pal, D. Mishra, A. Pal, S. Dutta, D. Chakravarty, S. Pal, "Digital Twin Fundamental Concepts to Applications in Advanced Manufacturing", Springer, 2021

Course Number	ME6108			
Course Credit	L-T-P-Cr : 3-0-0-3			
Course Title	Wear & Lubrication of Machine Components			
Learning Mode	Classroom Lecture			
Learning	Complies with PLOs 1 and 3			
Objectives	Surface failure due to rubbing is a critical problem that affects the life and			
	reliability of modern machinery. The knowledge of surface interaction is			
	interdisciplinary and essential to design for life and reliability and also enable			
	innovation in electromechanical and material engineering design. The course			
	focuses on theories of friction, wear, contact and lubrication, approaches to			
	model basic tribological elements/systems, and methods to simulate			
~	tribological processes.			
Course	This course is designed to fulfil understanding of theories of friction, wear,			
Description	contact and lubrication, approaches to model basic tribological			
	elements/systems, and methods to simulate tribological processes.			
Comme Orallin a	Prerequisite: NIL			
Course Outline	Machiner Surface Roughness Machenics of surface/solids contact			
	Hertzian Non Hertzian Modeling of Rough surface contact I aws of			
	friction Mechanisms of friction Stiction Stick slip Surface temperature			
	Surface energy micro and nano scale friction Rolling/Sliding – Heathercote			
	Model, Kalker, Wear – Adhesive Wear, Delamination Wear, Fretting Wear,			
	Abrasive Wear, Erosive Wear, Corrosive Wear, Mild and Severe Oxidative			
	Wear, Wear Mechanism Maps, Stribeck Curve, Reciprocatory, Rotary,			
	Macro-pitting, Micro -pitting, Wear in mechanical/electrical contact,			
	Lubrication – regimes: Boundary Lubrication, Solid Film Lubrication, Mixed			
	Lubrication, Hydrodynamic Lubrication, Hydrostatic Lubrication, EHL,			
	Lubrication in vacuum, Bearings – rolling elements, Journal bearing, Gears,			
	Cams, reciprocatory applications – e.g. sliders, piston-cylinders, IC engines-			
	valve-followers, Lubrications and wear control – coatings and material			
	processing, Lubricants - composition, base fluids, rheology, Additives -			
	boundary layer, Nano additives, Tribological tests – friction, Wear, Life tests,			
	Standards, Reciprocatory, Rotary, rolling/sliding –spiral orbit, dry and			
	Lubricated tests, Scaling up subscale tests, component tests, Nano scale			
- ·	testing			
Learning	Understanding of surface contact failures and ways to prevent or increase			
Outcome	life of such components.			
A	Design of test equipment for testing wear and friction at different scales.			
Assessment	Assignments, Quiz, Mid term and end term exams			
Niethod Suggested Deeding				
Duggesieu Neaulligs. Tavt Baaks:				
101 D.D. Amoli D.D. Dovice I. Helling T.I. Whomes Tribeleasy minsing and design				
[1] K.D. Arnell, P	.b. Davies, J. naning, I.L. whomes, Indology: principles and design			

- applications, Macmillan Education Ltd, First edition 1991.
- [2] B. Bhushan, Principles and Applications of Tribology, John Wiley, second edition, 2013.
- [3] K.L. Johnson, Contact mechanics, Cambridge University Press, 1987.
- [4] A. Cameron, Basic Lubrication Theory, E. Horwood, Halsted Press, 1976.

- [5] I. Hutchings, P. Shipway, Tribology: friction and wear of engineering materials, Butterworthheinemann, 2nd Edition, 2017.
- [6] G, Stachowiak, A.W. Batchelor, Engineering tribology, Butterworth-heinemann, Fourth edition, 2013.

Department Elective - II							
Sl. No.	Subject Code	Subject	L	Т	Р	С	
1.	ME6103	Continuum Mechanics	3	0	0	3	
2.	ME6109	Vehicle Dynamics and Multi-body Systems	3	0	0	3	
3.	ME6110	Biomechanics	3	0	0	3	
4.	ME6112	Advanced Mechanical Characterisation of Alloys	3	0	0	3	

Course Number		ME6103			
Course Credit		L-T-P-C: 3-0-0-3			
Course Name		Continuum Mechanics			
Pre-r	equisites	Mechanics of Solids and Mechanics of Fluids			
Learr	ning Mode	Classroom lecture			
Cours	se Objectives				
	Complies with PLOs 1 a	and 4			
•	• This course targets students of solid and fluid mechanics, aiming to familiarize them with				
	the fundamentals of cor	tinuum mechanics by enhancing their problem-solving skills for			
	engineering problems like structural mechanics, fluid dynamics and heat transfer.				
Cours	se Content				
1.	Mathematical Prelimin	aries			
	Introduction to Tensors:	Vectors and second order tensors; Tensor operation; Properties of			
	tensors; Invariants, Eiger	nvalues and eigenvectors of second order tensors; Tensor fields;			
	Differentiation of tensors	; Divergence and Stokes theorem.			
2.	Kinematics of Deforma	tion			
	Continuum hypothesis,	Material (Lagrangian) and Spatial (Eulerian) descriptions of			
	motion, Displacement fie	eld, Deformation gradient, Stretch ratios, Polar decomposition of			
	deformation gradient, Ve	elocity gradient, Rate of deformation, Vorticity, Length, area and			
	volume elements in defor	med configuration; Material and spatial time derivatives - velocity			
	and acceleration, Cauchy	y stress tensor, state of stress, concept of first and second Piola-			
	Kirchoff stress tensors.				
3.	Fundamental Laws in (Continuum Mechanics:			
	Material derivatives of	Line, Surface and Volume Integrals, Conservation of mass,			
	continuity equation, Conservation of linear and angular momentum, Conservation of				
	energy; Continuum Thermodynamics: Basic laws of thermodynamics; Energy equation;				
	Entropy; Clausius-Duhem inequality.				
4.	4. Constitutive Relations and Material Models:				
	Constitutive Assumption	s; Ideal Fluids; Elastic Fluids, Hyperelastic Material; Notion of			
	Isotropy; Isothermal Elasticity - Thermodynamic Restrictions, Material Frame				
	Indifference, Material Symmetry; Hooke's law, Stokes problem, Newtonian and Non-				
	Newtonian fluids.				
Learn	ing Outcomes:				
•	The students will understa	and the various theoretical elements of continuum mechanics, and how			
	these elements apply to so	lids and fluids.			
•	The students will be able	e to derive and apply the equations of continuum mechanics in the			
	following areas: stress an	d strain analysis, deformation, work and energy, theory of elasticity,			
	The students will be sheat	basicity, full mechanics, and the basis for constitutive equations.			
•	it will also be helpful for	o use continuum theory descriptions in their research work. Furthermore,			
	formulations	in them to understand research of scientific articles with continuum			
Asses	sment Method				
Mid s	emester examination. End	semester examination. Class test/Ouiz, Assignments			
Refer	ence Rooks				
1	Mase G T and Mase G	E Continuum Mechanics for Engineers CRC Press 2nd Edition			
	1999.	E., Continuum Moonumes for Engineers, Cree Fress, 2nd Edition,			
2.	Malvern, L. E., Introduct	tion to the Mechanics of a Continuous Medium, Prentice-Hall Inc.,			
	Englewood Cliffs, New Je	rsey, 1969.			
3.	Rudnicki, J. W., Fundame	ntals of Continuum Mechanics, John Wiley & Sons, 2015.			
4.	Lai, W. M., Rubin, D., a	and Krempl, E., Introduction to Continuum Mechanics, Butterworth-			
	Heinemann, 4th edition, 2	015.			
5.	Reddy, J.N., An introducti	on to continuum mechanics, Cambridge University Press, 2013.			
6.	Jog, C.S., Foundation	s and applications of mechanics: Volume I: Continuum			
	mechanics, Narosa Publish	ning House, 2007.			

Course Number	ME6109		
Course Credit	3-0-0-3		
Course Title	Vehicle Dynamics and Multi-body Systems		
Learning Mode	Lectures and Simulation tools		
Learning Objectives	Complies with PLOs 1 and 4		
	Understanding the dynamics of a wheeled vehicle, various systems- tires		
	and the mechanics, drive trains, steering, braking and suspension systems.		
	Developing models for handling and stability vehicle.		
	Concepts of rigid body dynamic analysis for enabling modeling of vehicle		
	dynamic systems		
	Prerequisite: Engineering Mechanics/Dynamics or equivalent course		
Course Description	Wheeled vehicle dynamics with tire mechanics and effect of various		
	subsystems such as drive trains, steering, suspensions, braking. Stability		
	and safety of the vehicle. Basic concepts of rigid body dynamics which		
Course Outline	go into the mathematical modeling of the vehicle system.		
Course Outline	introduction to venicle dynamics: venicle coordinate systems; loads on		
	axies of a parked car and an accelerating car. Acceleration performance:		
	Tire construction and terminology: mechanics of force generation: rolling		
	resistance: tractive effort and longitudinal slip: cornering properties of		
	tire: slip angle: camber thrust: aligning moments. Aerodynamic effects on		
	a vehicle: Mechanics of airflow around the vehicle, pressure distribution,		
	aerodynamic forces; pitching, rolling and yawing moments; crosswind		
	sensitivity. Braking performance: Basic equations for braking for a		
	vehicle with constant deceleration and deceleration with wind-resistance;		
	braking forces: rolling resistance, aerodynamic drag, driveline drag,		
	grade, tire-road friction; brakes, anti-lock braking system, traction		
	control, braking efficiency. Steering systems and cornering: Geometry of		
	steering linkage, steering geometry error; steering system models, neutral		
	steer, under-steer, over-steer, steering ratio, effect of under-steer; steering		
	system force and moments, low speed and high speed cornering;		
	directional stability of the venicle; influence of front wheel drive.		
	suspension and ride: Suspension types—sond axie suspensions,		
	active suspension systems: excitation sources for vehicle rider: vehicle		
	response properties suspension stiffness and damping suspension		
	isolation active control suspension non-linearity bounce and nitch		
	motion. Roll-over: Ouasi-static roll-over of rigid vehicle and suspended		
	vehicle; transient roll-over, yaw-roll model, tripping, use of standards for		
	design. Multi-body systems: Review of Newtonian mechanics for rigid		
	bodies and system of rigid bodies; coordinate transformation between two		
	set of axes in relative motion between one another; Euler angles; angular		
	velocity, angular acceleration, angular momentum etc. in terms of Euler		
	angle parameters; Newton-Euler equations of motion; elementary		
	Lagrangian mechanics: generalised coordinates and constraints; principle		
	of virtual work; Hamilton's principle; Lagrange's equation, generalized		
	torces. Lagrange's equation with constraints, Lagrange's multiplier.		
Learning Outcome	Mathematical modeling of the vehicle dynamic system with integrations		
	of various subsystems- Tire, drive trains, suspension, steering, brakes.		
	Understanding of the stability and rollover limits of the vehicle.		
	Use of simulation tools for developing the analytical model and also		
	rigid body analysis tools		

Assessment Method Assignments, Quiz, Mid term and end term exams

Suggested Readings:

- 1. T.D. Gillespie, "Fundamental of Vehicle Dynamics", SAE Press (1995).
- 2. J.Y. Wong, "Theory of Ground Vehicles", 4th Edition, John Wiley & Sons (2008).
- 3. Reza N. Jazar, "Vehicle Dynamics: Theory and Application", 1st Edition, Springer (2008).
- 4. R. Rajamani, "Vehicle Dynamics and Control", Springer (2006).
- 5. A.A. Shabana, "Dynamics of Multibody Systems", 3rd Edition, Cambridge University Press (2005).

Reference Book

- 1. G. Genta, "Motor Vehicle Dynamics", World Scientific Pub. Co. Inc. (1997).
- 2. H.B. Pacejka, "Tyre and Vehicle Dynamics", SAE International and Elsevier (2005).
- 3. Dean Karnopp, "Vehicle Stability", Marcel Dekker (2004).
- 4. U. Kiencke and L. Nielsen, "Automotive Control System", Springer-Verlag, Berlin.

5. M. Abe and W. Manning, "Vehicle Handling Dynamics: Theory and Application", 1st Edition, Elsevier (2009).

6. L. Meirovitch, "Methods of Analytical Dynamics", Courier Dover (1970).

7. H. Baruh, "Analytical Dynamics", WCB/McGraw-Hill (1999).

Course Number	ME6110
Course Credit	L-T-P-Cr : 3-0-0-3
Course Title	Biomechanics
Learning Mode	Classroom Lecture
Learning Objectives	 Complies with PLOs 1 and 4 The objectives of this course are: Recognize different forces and couples acting on a Biological systems. Should be able to unify the biological system as a Continuum and demarcate the different elements of biological system such as bone, tendon, cartilage and smooth muscle cells. Analyze the growth, remodelling and residual stress. Perform the experiment on RBC like system, viscosity measurement blood-like liquid, ECG, blood pressure, pressure distribution of human walk on the foot, determination of residual stress overgrowth. Model some of the biological system through computational technique. Able to identify a few of instrumentation technique like ECG, EEG, blood flow, respiratory systems Should be able to mathematically analyse a simple injury of biological
Course	system from impact and able to perform the preventive design from the first principle. This course is designed to fulfil the requirement of designing biological systems from the engineering perspective by imparting the some knowledge
Description	of biological system through analytical way. Prerequisite: NIL
Course Outline	Introduction to Biological System Cell, Tissues and Connective Tissues and their Phenomenological Models: Bone, Tendon, Cartilage, Smooth Muscle cells, Musculo-Skeletal system as a tensegrity structure Gait Analysis: Locomotion and Control Modeling of Humanoid Robots Physiology and mechanical properties of muscles- Viscoelastic model of muscle Tentanization pulse in muscle fibers Physiology and mechanical properties of bones- Bones as bidirectional fibers-nets and its stress response Circulation system Composition and rheological properties of blood Construction of RBC Composition of Artery and Venus walls Operation of heart as a pump and electrical potential
	Central nervous system Auxiliary nervous system

 Experiment on Biological system- Experiment on RBC like system, viscocity measurement blood-lili ECG, blood pressure, pressure distribution of human walk on the Growth, Remodeling and Residual Stresses Mathematical model of growth Mathematical model of growth Mathematical model of growth Mathematical model of tumor Remodeling of biological tissues like skin, artery- wrinkle of skin of artery Modeling of Residual stress Experiment on Biological system- Determination of residual stress in artery-like tissue Determination of ageing affect on arterial tissue Instrumentation Technique in Biomechanics Measurement of Biopotential – ECG, EMG, ENG, Test on Respiratory Mechanism Ultrasonic measurement of Blood flow Drug Delivery Systems Application of Biomechanics Aptrificial Limbs and organs Occupational Biomechanics - consideration in Machine Co Workplace Design 				
T .				
Outcome	a) Will be able to model a biological system both analytically and			
	numerically.b) Will be able to apply the knowledge of Electro-Magnetic Interference			
	to design different instruments like ECG, EEG and EMG.c) Will be able obtain the interpretation of biological system in growth.			
	remodelling and residual stresses to predict through model the circulation system of human body.			
	d) Will be able to identify the different sophisticated instrumentation			
	technique like MRI, Colour Angiogram, Elastogram in qualitative and quantitative way to identify the diseased cells			
	e) Will be able to design and develop different biological			
A and a second second	instruments/actuators/device/artificial limbs needed for the society.			
Assessment Method	test & quiz (10%), Assignment (10%)			
Suggested Readi	ngs:			
Text Books:	D. Humphrey and Sherry Del ange "An Introduction to 2004			
Bior	nechanics: Solids and Fluids, Analysis and Design", Springer;			
1 st I	Edition			
2. Rog Hum	er Bartlett "Introduction to Sports Biomechanics: Analysing 2007 nan Movement Patterns" Routledge; 2 nd Edition			

3.	STEPHEN C. COWIN AND JAY D. HUMPHREY Edt.,	2000
	"Cardiovascular Soft Tissue Mechanics", Kluwer Academic	
	Publishers	
4.	Walter D. Pilkey, Dmitry V. Balandin, Nikolai N. Bolotnik, "Injury Biomechanics and Control: Optimal Protection from Impact ", 1 st	2009
	Edition., Wiley.	
5.	Don B. Chaffin, Gunnar B. J. Andersson, Bernard J. Martin	1999
	"Occupational Biomechanics", Wiley-Interscience; 3rd Edition	
6.	John G. Webster, "Medical Instrumentation: Application and	1997
	Design", Wiley; 3 rd Edition	

Course Name	Advanced Mechanical Characterisation of Alloys						
Course Number	ME6112						
L-T-P-C	3-0-0-3						
Pre-requisites	Nil						
Learning Mode	Class room lecture						
Course objectives							
Complies with PLOs 2	Complies with PLOs 2 and 4						
• Impart a thorough unde	rstanding of the mechanical behaviour of materials under various						
conditions.							
• Teach students how to i	nterpret the results of mechanical tests.						
• Apply this knowledge to	o solve real-world engineering problems.						
Course Content							
1. Introduction							
Fundamentals of elastic as	nd plastic deformation						
Yield criteria, von Mises,	Tresca, Hill 48, Hill 1993						
Defects in materials							
Role of dislocations, twin	nning, and slip in plastic deformation						
Strengthening mechanism	ns in alloys						
Ductile and brittle failure	e, intergranular and transgranular failure, GTN model						
Influence of temperature,	strain rate, and environment on plastic deformation						
Application of mechanica	al properties in engineering design						
2 Monotonia Tosta							
Z. Wonotonic rests	par and torsion tasts						
Bend test and notch tensi	Tensile, compression, shear, and torsion tests						
Macro micro and nano hardness tests							
Wear testing							
Hydrogen embrittlement evaluation							
3. Fatigue							
Oligocyclic fatigue, Lov	w cycle fatigue, high cycle fatigue, and giga cycle fatigue						
Concept of endurance lin	nit, effect of mean stress						
Basquin and Coffin-Man	son laws, strain energy density laws for life prediction						
Cyclic stress-strain curve	analysis						
Masing analysis							
Cyclic hardening/softenin	ng						
Notch fatigue							
Thermo-mechanical fatig	jue						
Frotting fotious							
Effect of hydrogen embri	ttlement on fatigue						
Influence of defects and a	microstructural inhomogeneity on fatigue						
influence of defects and h	influence of defects and incrostructural innomogeneity on fatigue						
4. Fracture							
Stress concentration factor	or and stress intensity factor						
Griffith theory	-						
Basics of linear elastic ar	nd elastoplastic fracture mechanics						
Impact toughness and du	ctile to brittle transition						
Fracture toughness and c	oncepts of K_{1c} and J_{1c} , CTOD, Mode mixity,						
Fatigue Crack Growth Ra	ate (FCGR), and Paris law						
Short crack growth and c	oncept of K _{th}						

5. Creep

Creep and creep crack growth Stress relaxation tests Creep-fatigue interaction

6. High Rate Deformation

Strain rate sensitivity Crash testing Crashworthiness of engineering components

7. Sheet Metal Forming

Concept of planar anisotropy and texture Forming limit diagram, Wrinkling limit, fracture limit curve Hole expansion ratio Bauschinger effect and spring back r-ratio and deep drawing ratio

Learning Outcomes:

By the end of this course, undergraduate students should be able to:

- Demonstrate a comprehensive understanding of various advanced mechanical properties.
- Interpret various mechanical tests
- Apply knowledge of advanced mechanical properties to solve real-world engineering problems and enhance material performance.

Assessment Method

• Quiz, mid and end-semester examinations

Texts and References

Text Books:

- 1. George E. Dieter, Mechanical Metallurgy, McGraw Hill Education, 3rd Edition, 1 July 2017.
- 2. S. Suresh, Fatigue of Materials, Cambridge University Press, 2nd edition, June 2012.
- 3. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press, 4TH EDN, 2017.
- 4. M.N. Shetty, Dislocation and mechanical behaviour of materials, PHI, 2013.

Reference Books:

- 1. Prashant Kumar, Elements of Fracture Mechanics, McGraw Hill Education, 2017.
- 2. J. Schijve, Fatigue of Structures and Materials, Springer, 2nd ed. 2009.
- 3. Bruno C. De Cooman and Kip O. Findley, Introduction to the Mechanical Behavior of Steel, Association for Iron & Steel Technology, 30 Nov 2017.

Sl. No.	Subject Code	SEMESTER II	L	Т	Р	С
1.	ME5201	Advanced Engineering Software Lab	1	0	4	3
2.	ME5202	Advanced Dynamics & Vibration	3	1	0	4
3.	ME5203	Measurement and Instrumentation	3	0	0	3
4.	ME5204	Design Lab - II	0	0	3	1.5
5.	ME62XX	DE-III	3	0	0	3
6.	ME62XX	DE-IV	3	0	0	3
7.	RM6201	Research Methodology	3	1	0	4
8.	IK6201	IKS	3	0	0	3
	TOTAL		19	2	7	24.5

Course	Number	ME5201			
Course Credit		L-T-P-C: 1-0-4-3			
Course Title		Advanced Engineering Software Laboratory			
Learning Mode		Classroom Lectures and Practical			
Learnin	ng Objectives	Complies with PLOs 1-4.			
		Exposure to industrial software used in Mechanical Engineering			
		practices.			
Course	Description	This course is designed to make students understand commercial software			
		along with the understanding of numerical al techniques.			
Course	Outline	CAD/CAM: 2D and 3D geometric transformation, Composite			
		Transformation, Projections; Curves: Cubic, Bezier, Splines; Surfaces:			
		Quadric, Coons patch, Super Quadric, Bezier, B-Splines. Process			
		planning, CL data generation, Automatic CNC code generation.			
		FEM : Solid model creation, different types of elements, chunking of			
		model, meshing, mesh quality, different kinds of analysis: static, dynamic,			
		transient, thermal, electro-magnetic, acoustics, sub- structuring and			
		condensation, Error and convergence.			
		Non-linear static and dynamic analysis, contact analysis, multi-physics			
		problem, rigid body analysis of flexible element.			
		CFD : Different types of CFD techniques, various stages of CFD techniques, (i) are processer according to boundary conditions.			
		techniques (1) pre-processor: governing equations, boundary conditions,			
		schemes different solvers (iii) post processing: analysis of results			
		validation grid independent studies etc. Developing codes using			
		commercial/open source software for solving few problems of laminar			
		and turbulent flow with heat transfer applications.			
		Engineering software's related to CAD/CAM FEM CFD with both GUI			
		and script like languages, are to be used for laboratory assignments.			
Learnir	ng Outcome	At the end of the course, students will be able to use the industrial			
	8	software for simulating industrial and research problems related to solid			
		and fluid mechanics. A mature understanding of various numerical			
		techniques and their advantages and disadvantages will develop with			
		respect to the software used in the class.			
Assessi	ment Method	Class test & quiz, Assignment, Class Performance and Viva, Practical			
		Exam			
Sugges	ted Readings:				
1.	D. F. Rogers	s and J. A. Adams, "Mathematical Elements for Computer Graphics",			
	McGraw- Hil	1, 1990			
2.	M. Groover	and E. Zimmers, "CAD/CAM: Computer-Aided Design and			
	Manufacturin	g", Pearson Education, 2009.			
3.	Saxena and B	3. Sahay, "Computer Aided Engineering Design", Springer, 2007.			
4.	J. N. Reddy,	"An introduction to Finite Element Methods", 3rd Ed., 1 ata McGraw-Hill,			
5	2005. I Eich and T	Delvitachira "A First Course in Finite Flomente" 1st Ed. John Wiley and			
5.	J. FISH, and I Song 2007	. Berytschko, A First Course in Finite Elements, 1st Ed., John whey and			
6	I D Anderso	on "Computational Fluid Dynamics" McGraw-Hill Inc. (1995)			
7	H K Veret	reeg and W Malalaskera "An Introduction to Computational Fluid			
Dynamics" Γ		Dorling Kindersley (India) Pvt I td. (2008)			
8.	S. Biringen	and C Chow. An Introduction to Computational Fluid Mechanics by			
	Example.				

Course Number	ME5202				
Course Credit	L-T-P-Cr : 3-1-0-4				
Course Title	Advanced Dynamics and Vibration				
Learning Mode	Classroom Lecture				
Learning	Complies with PLOs 1 and 4.				
Objectives	This course aims to understand the fundamentals of rigid body dynamics,				
	vibration of single and multi-degrees of freedom system with introduction to				
	nonlinear dynamics.				
Course	This course is designed to fulfil mathematical modelling and physics of rigid				
Description	body dynamics, vibration of discrete and continuous system.				
	Prerequisite: NIL				
Course Outline	Review of Newtonian mechanics for rigid bodies and system of rigid bodies;				
	coordinate transformation between two set of axes in relative motion between				
	one another; Euler angles; angular velocity, angular acceleration, angular				
	momentum etc. in terms of Euler angle parameters; Newton-Euler equations				
	of motion; elementary Lagrangian mechanics: generalized coordinates and				
	constraints, principle of virtual work, Halinton's principle, Lagrange's				
	Lagrange's multiplier Nonlinear effects in Dynamics Review of the single				
	DOE system and simple Multi-DOE lumped parameter systems. Equations of				
	motion for free and forced vibration of distributed parameter systems: avial				
	vibration of a bar transverse vibration of a string torsional vibration of a				
	shaft, transverse vibration of beams, Boundary-value problem and boundary				
	conditions. Differential eigenvalue problem, eigen-function and natural				
modes.					
	Orthogonality of eigen-functions and expansion theorem. Rayleigh quotient.				
	Response to initial conditions and external excitations. Discretization of				
	distributed parameter system: Algebraic eigenvalue problem, eigenvalue and				
	eigenvectors. Introduction to Modal analysis.				
Learning	Mathematical modelling of dynamics system with rigid body and vibratory				
Outcome	system.				
Assessment	Mid Semester Examination (30%), End Semester examination (50%), Class				
Method	test & quiz (10%), Assignment (10%)				
Suggested Reading	gs:				

Text Books:

- 1. H. Baruh, Analytical Dynamics, McGraw-Hill, 1999.
- 2. L. Meirovitch, Methods of Analytical Dynamics, Dover Publication, 2010.
- 3. D.T. Greenwood, Principles of Dynamics, Prentice-Hall International, 1988.
- 4. A.A. Shabana, Dynamics of Multibody Systems, 4th Cambridge UniversityPress, 2013.
- 5. L. Meirovitch, Fundamentals of Vibration, McGraw Hill, 2000.
- 6. W.T. Thompson, M.D. Dahleh, C. Padmanabhan, Theory of Vibration with Application, 5th Ed., Pearson, 2008.
- 7. S.S. Rao, Mechanical Vibration, 4th Ed., Pearson, 2004.
- 8. W. Weaver, Jr., S.P. Timoshenko, D.H. Young, Vibration Problems in Engineering, 5th Ed., John Wiley and Sons, 1990.

Course Number	ME5203
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Measurement and Instrumentation
Learning Mode	Classroom lecture
Learning	Complies with PLOs 1-3.
Objectives	The course aims to provide a basic understanding of the mechanical
	measurement systems and statistical analysis of experimental data.
Course	The course contains the generalized configuration and functional elements of
Description	measuring systems, static and dynamic characteristics of measuring
	instruments. The course also includes the instrumentation for displacement,
	strain, velocity, force, torque, power, pressure, sound, flow and temperature
	measurement.
Course Outline	Module-1 Basic concepts of measurement, functional elements of instruments,
	classification of measuring instruments, methods of correction for interfering
	and modifying inputs, static characteristics of measuring instruments
	Module-2 Static characteristics of measuring instruments, loading effect and
	impedance matching, statistical analysis, Chi-square test, least square method,
	Curve Fitting, Uncertainty analysis and error propagation
	Module-3 Generalized model of a measuring system, zero and first order
	system, second order system. First order system- ramp response, impulse
	response, frequency response, Second order system- step response, ramp
	response, impulse and frequency response, higher order systems,
	compensation, transducers
	Module-4 Flow measurement (not wire anemometer, PIV systems, coriolis
	flow meter, etc.,) temperature measurement (thermocouple, RTD, Infra
	thermography etc.), neat flux sensors. Optical Methods- Shadowgraph,
	Schnieren and Interferometer.
	force and torque massurement, displacement and acceleration measurement,
	Module 6 Sound measurement, displacement and acceleration measurement flow
	visualization air pollution sampling and measurement pollutants Gas
	Chromatography
Learning	• Students will be able to analyze and behavior and characteristics of
Outcome	• Students will be able to analyze and behavior and characteristics of various measuring instruments and record data
Outcome	 Students will be able to analyze and interpret the experimental data
	 Students will be able to analyze and interpret the experimental data Students will be able to perform uncertainty analysis in the measured and
	• Students will be able to perform uncertainty analysis in the measured and derived quantities
Assessment	Mid Semester Examination End Semester examination Ouiz assignments
Method	seminar
Toythool	Schinha
I CXLDOOK	

1. E.O. Doebelin, Measurement Systems: Application and Design.

Reference books

- 2. E.G.R. Eckert and R.G. Goldstein, Measurement Techniques in Heat Transfer.
- 3. T.P. Holeman, Experimental Methods for Engineers.
- 4. H.D. Young, Statistical Treatment of Experimental Data.

Course Number	ME5204			
Course Credit	L-T-P-Cr : 0-0-3-1.5			
Course Title	Design Lab - II			
Learning Mode	Laboratory experiments			
Learning Objectives	Complies with PLOs 2 and 3. This course aims to experimentally evaluate the strength of material and fracture mechanics based on materials parameters.			
Course	This course discusses the experimental evaluation of Mode I fracture			
Description	toughness, stress concentration, fatigue crack growth mode shapes and			
	measurement of natural frequencies of vibration.			
	Prerequisite: NIL			
Course Outline	 Measurement of Mode I fracture toughness of an Aluminum alloy and PMMA using a compact tension (CT) specimen. Measurement of fatigue crack growth and determination of Paris law parameters for an Aluminum alloy using a CT specimen. Measurement of strains using strain gauges. Determination of ductile to brittle transition temperature of Mild Steel and Aluminum using Charpy Impact Testing Machine. Torsion of bars of non-circular cross-section. Measurement of stress concentration factor in a specimen with holes using photo- elasticity method. Observation of mode shapes and measurement of natural frequencies of vibration of a circular plate. Detection of location and size of the crack in a cracked beam using deflection measurement method. Scanning Electron Microscopy examination of fracture surfaces of specimens fractured in experiment. Use of standards for experiments. 			
Learning	Understanding of fundamentals of experimentally evaluating the strength of			
Outcome	material and fracture mechanics based materials parameter.			
Assessment	Experiment (40%), Report (20%), Quiz (10%), Viva (30%)			
Method				

Suggested Readings:

Texts Books:

- 1. Holman J.P., Experimental Methods for Engineers, McGraw Hill Series in Mechanical Engineering, ISBN-10: 0073529303, 8th Editions, 2011.
- 2. Doebelin E.O., Measurement systems- Applications and Design, 4e, Tata McGraw-Hill, 1990.
- **3**. Dally, Riley, and McConnell, Instrumentation for engineering measurements, 2e, John Wiley & Sons., 1993.
- 4. Figiola, R.S. and Beasley, D.E., Theory and design for mechanical measurements, 2(e), John Wiley, 1995.

	Department Elective - III							
Sl. No.	Subject Code	Subject	L	Т	Р	С		
1.	ME6207	Rotor Dynamics	3	0	0	3		
2.	ME6208	Robot Motion Planning	3	0	0	3		
3.	ME6209	Non-linear Systems Dynamics	3	0	0	3		

Course Number	ME6207
Course Credit	L-T-P-Cr : 3-0-0-3
Course Title	Rotor Dynamics
Learning Mode	Classroom Lecture
Learning	This course aims to understand Rotor systems, Mathemtical modeling and
Objectives	design of Rotor systems
Course	Complies with PLOs 1 and 3
Description	This course is designed to fulfil requirements for modeling and analysis of
	Rotor systems with applications in bearings, seals, turbines and other state of
	the art systems.
	Prerequisite: Dynamics or equivalent course
Course Outline	Rotor-Bearing Interaction, Flexural Vibration, Critical Speeds of Shafts,
	Jeffcott Rotor Model, Unbalance Response, Effect of Damping,
	Campbell Diagram, Effects of Anisotropic Bearings, Unbalanced
	Response of an Asymmetric Shaft, Parametric Excitation, Gyroscopic
	Effects, Rotor with Non-central Disc, Rigid-rotor of Flexible Bearings,
	Stodola Model, Effect of Spin Speed on Natural Frequency, Forward
	and Backward Whirling Motion, Aerodynamic Effects, Instability: Rub,
	Tangential forces, Rotor-shaft Continuum, Effect of Rotary Inertia and
	Shear-Deformation within the Shaft, Equivalent Discrete System, Finite
	Element model for Flexural Vibration, Torsional Vibration, Geared and
	Branched Systems, Transfer Matrix Model, Fluid Film Bearings: Steady
	State Characteristics of Bearings, Reynolds's Equation, Oil-Whirl,
	Rigid And Flexible Rotor Balancing, Active Vibration Control of Rotor-
	Bearing System: Active Magnetic Bearing, Condition Monitoring of
	Rotating Machinery, Measurement Techniques. Rolling element
	bearings, Fault diagnosis.
Learning	Mathematical modeling and physics understanding of rotor systems as a
Outcome	dynamic system- stability and control with rigid and flexible systems.
	Application of rotor systems with supporting systems of seals, bearings etc
	and the ensuing diagnostics
Assessment	Mid Semester Examination (30%), End Semester examination (50%), Class
Method	test & quiz (10%), Assignment (10%)
Suggested Reading	gs:

Text Books:

1. J. S. Rao, Rotor Dynamics, Third ed., New Age, New Delhi, 1996 (2009 reprint).

2. M. J. Goodwin, Dynamics of Rotor-Bearing Systems, Unwin Hyman, Sydney, 1989.

Reference Books:

- 1. E. Krämmer, Dynamics of Rotors and Foundation, Springer-Verlag, New York, 1993.
- 2. G. Genta, Dynamics of Rotating Systems, Springer, New York, 2005.
- 3. J.M. Vance, Rotordynamics of Turbomachinery, Wiley, New York, 1988.
- 4. M.L. Adams, Rotating machinery vibration: from analysis to troubleshooting, Seconded., CRCPress, Boca Raton, 2010.
- 5. J. Kicinski, Rotor dynamics, Tech. Book, New Delhi, 2010.

- 6. D. Childs, Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis, Wiley, NewYork, 1993.
- 7. Y. Ishida, T. Yamamoto, Linear and Nonlinear Rotordynamics: A Modern TreatmentwithApplications, 2nd Edition, Wiley, 2012.
- 8. J.P. Den Hartog, Mechanical Vibration, Courier Dover Publication, 2013.
- 9. R. Tiwari, Simple Rotor Analysis Through Tutorial Problems, CRC Press, 2023.
- 10. R. Tiwari, Rotor systems: Analysis and Identification, CRC press, 2017.

Course Number	ME6208
Course Credit	L-T-P-Cr : 3-0-0-3
Course Title	Robot Motion Planning
Pre-requisite	Mobile Robotics
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 1 and 4
Objectives	 This course covers the prominent motion planning algorithms used in the area of mobile robotics. The course will cover various motion planning algorithms and
	analyses.
Course	This course introduces students to motion planning algorithm theory and
Description	implementation which is a crucial enabling technology for imparting higher degree of autonomy to robots.
	Prerequisite: ME6106 Mobile Robotics
Course Outline	 Configuration space and topology: Homeomorphism and diffeomorphism, differential manifolds, connectedness and compactness, parameterization of SO(3) Potential functions: Additive attractive/repulsive potential, distance computation using Brushfire algorithm, local minima problem, wave-front planner, navigation potential functions, sphere-space and star-space, potential function in non-Euclidean spaces Roadmaps: Visibility maps, Generalized Voronoi Diagram, Retract-like Structures, Canny's Roadmap algorithm, opportunistic path planner Cell decomposition: Trapezoidal decomposition, Morse cell decompositions, Visibility-based decompositions for Pursuit/Evasion; Sampling-based algorithms: Probabilistic roadmaps, Expansive spaces trees, Rapidly-Exploring Random Trees, Analysis of PRM.
Learning	After completing this course, the students will be able to implement and
Outcome	analyse robot motion planning algorithms.
Assessment	Mid Semester Examination, End Semester examination, Class test and quiz,
Method	Programming Assignments
Suggested Reading Text Book:	<u>zs:</u>
[1] H. Choset, K. M	1. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun,
Principles of Ro 2005.	obot Motion: Theory, Algorithms, and Implementations, MIT Press, Boston,
2005.	

Reference Book:

 [1] S. M. LaValle, "Planning Algorithms", Cambridge University Press, 2006. (Available online http://planning.cs.uiuc.edu/)

Course Number	ME6209
Course Credit	L-T-P-Cr : 3-0-0-3
Course Title	Nonlinear System Dynamics
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 1, 3 and 4
Objectives	
	The objective of this course is,
	• To impart the ability of solving different nonlinear systems through
	analytical approach
	• To impart the ability of solving different nonlinear systems through
	• To import the ability of analyzing nonlinear systems through fixed
	• To impart the ability of analyzing nonlinear systems through fixed
	• To impart the ability of analysing nonlinear system design by
	identifying subharmonic and superharmonic resonance. Poincare
	map, Liapnouv exponent.
	• To impart the ability of identifying Chaos and Factals in engineering
	systems.
Course	This course is designed to fulfil the requirement of designing engineering
Description	systems considering the nonlinearity in the system, which is usually ignored
	in system design.
	Prerequisite: Dynamics/Engineering Mechanics
Course Outline	Introduction to Nonlinear Dynamical System: Linear vs. nonlinear
	fluid-mechanical and chemical/biological systems. Existence and
	uniqueness of solutions
	First-order nonlinear systems: Autonomous systems: Equilibrium
	velocity fields behavior dependence on parameters bifurcations of
	equilibria (saddle-node pitchfork and transcritical) implicit function
	theorem. Nonautonomous systems.
	Second-order nonlinear conservative/nonconservative systems:
	periodic orbits and saddle points, potential function and phase portrait
	parameter-dependent conservative systems local bifurcations examples
	of global bifurcations, effect of dissipative forces.
	First order system in the plane: Constal phase plane englysis
	linearization general solution for linear systems classification of
	equilibrium points limit cycles Bendixon's criterion and Poincare
	Bendixon theorem. Point mapping techniques, exact transformations.
	and Poincare mappings.
	One-dimensional linear and nonlinear mannings: Fixed points
	linearization stability parameter- dependent mappings bifurcations
	D 4 b 4 b 4 b 4 b 4 b 4 b 4 b 4 b 4 b 4
	Perturbation and other approximate methods : Introduction to
	regular and singular perturbation expansions through algebraic and
	nanscendental equations, roots of equations and dependence on parameters. Perturbation method for free oscillations, secular terms
	frequency dependence on response Poincare-Lindstedt technique for
	inequency dependence on response, romeare-Endstear technique for

	 periodic solutions, Harmonic balance and Fourier series for periodic solutions. Averaging methods, amplitude and frequency estimates, slowly varying amplitude and phase ideas, self-excited oscillations. Multiple time-scale techniques. Forced oscillations, concept of a resonance, oscillations far from resonance, near resonances and strong and weak excitations, response near primary resonance, softening and hardening nonlinearities, Duffing's equation and primary and secondary resonances, forced response of self excited systems near resonance, frequency locking and entrainment. General linear systems with constant and periodic coefficients: Concepts of stability (Lyapunov, Poincare, etc.), stability by linearization, boundedness of solutions, Mathieu's equation, transition curves and periodic solutions for Mathieu-Duffing system. 			
	Relaxation oscillations: The van der Pol oscillator.			
	Multi degree of freedom systems : Examples, various types of resonances – external, internal, and combination, etc., response prediction using methods of averaging and multiple scales.			
	Some more on bifurcations, structural stability and chaos.			
	Experimental Demonstration : String ballooning motion. Fun with Cantilever beam of large deformation and other developed models. Electronic Circuit building. Numerical computation with Matlab/Mathematica.			
Learning Outcome	 Following learning outcomes are expected after going through this course. Will be able to solve nonlinear system of equations both analytically and numerically. Will be able to apply the method of multiple scale, perturbation method, harmonic balance for solving a set of nonlinear differential equations. Will be able obtain the interpretation of nonlinear system behavior over the linear system behavior. Will be able to identify the Chaos in engineering system and will be able to quantify through various measures. Will be able to derive and analyse nonlinear system behavior. 			
Assessment Method	Mid Semester Examination (30%), End Semester examination (50%), Class test & quiz (10%), Assignment (10%)			
 Suggested Readings: Text Books: Jordan, D. W. and Smith, P.: Nonlinear Ordinary Differential Equations, 3rdEdition,Clarendon Press, Oxford, 1999 ed. Nayfeh, A. H. and Mook, D. T.: Nonlinear Oscillations, Wiley Interscience, NewYork., 1979ed. Nayfeh, A. H and Balachandran, B. : Applied Nonlinear Dynamics: Analytical,Computational and Experimental Methods, Wiley, 2008 ed. Strogatz, S. H. : Nonlinear Dynamics And Chaos: With Applications To Physics,Biology,Chemistry, And Engineering, Westview Press, 2001 ed. Ogorzalek Maciej J.:Chaos and Complexity in Nonlinear Electronic Circuits, WorldScientificSeries on Nonlinear Science Series A, 1997 ed. 				

Department Elective - IV						
Sl. No.	Subject Code	Subject	L	Т	Р	С
1.	ME6210	Robotics: Advanced Concepts & Analysis	3	0	0	3
2.	ME6211	Analysis of Welding Processes	3	0	0	3
3.	ME6212	Fracture and Fatigue	3	0	0	3

Course Number	ME6210		
Course Credit	L-T-P-Cr : 3-0-0-3		
Course Title	Robotics: Advanced Concepts and Analysis		
Learning Mode	Classroom Lecture		
Learning	Complies with PLOs 1 and 4		
Objectives	• This course gives various aspects of kinematics, dynamics, motion		
	planning, and control of robotic manipulators		
	• This course presents computational aspects, control aspects and		
	practical implementation of multi degree of freedom manipulators for		
	industrial application		
Course	This course is designed to fulfil the basic and advanced concepts of		
Description	kinematics, dynamics, motion planning, and control of industrial Robotics.		
	The course will provide theoretical background as well as expose the students		
	to practical aspects of Robotic manipulators.		
Course Outline	Prerequisite: NIL		
Course Outline	introduction to robotics: orier instory, types, classification and usage and the		
	Kinematics of robot: direct and inverse kinematics problems and workspace		
	inverse kinematics solution for the general 6R manipulator redundant and		
	over-constrained manipulators.		
	Velocity and static analysis of manipulators: Linear and angular velocity.		
	Jacobian of manipulators, singularity, static analysis.		
	Dynamics of manipulators: formulation of equations of motion, recursive		
	dynamics, and generation of symbolic equations of motion by computer		
	simulations of robots using software and commercially available packages.		
	Planning and control: Trajectory planning, position control, force control,		
	hybrid control		
	Industrial and medical robotics: application in manufacturing processes, e.g.		
	casting, welding, painting, machining, heat treatment and nuclear power		
	stations, etc.; medical robots: image guided surgical robots, radiotherapy,		
	cancer treatment, etc.		
	Advanced topics in robotics: Modelling and control of flexible manipulators,		
	wheeled mobile robots, bipeds, etc. Future of robotics.		
Learning	• After completing this course, the students will be able to design and		
Outcome	• After completing this course, the students will be able to design and fabricate a robotic arm for some practical applications		
Outcome	• Students will able to operate and control a robotic system using the		
	theoretical concepts learned in this course		
	incorecteur concepts rearried in and course		
Assessment	Mid Semester Examination, End Semester examination, Class tests,		
Method	Assignments, mini-projects		
Suggested Readings:			
Reference Books:			
[1] M. P. Groover, M. Weiss, R. N. Nagel and N. G. Odrey, "Industrial Robotics-Technology,			
Programming and Applications", McGraw-Hill Book and Company (1986).			
[2] S. K. Saha, "Introduction to Robotics", Tata McGraw-Hill Publishing Company Ltd. (2008).			
[3] S. B. Niku, "Introduction to Robotics–Analysis Systems, Applications", Pearson Education			
(2001).			
[4] A. Ghosal, Robotics: "Fundamental Concepts and Analysis", Oxford University Press (2008). [5] Dines, "Industrial Babat Dragramming, Duilding, Amiliantian for the Eastering of the Eutropy"			
[5] Fires, industrial Kobol Programming–Building Application for the Factories of the Future", Springer (2007)			

Springer (2007). [6] Peters, "Image Guided Interventions – Technology and Applications", Springer (2008).

[7] K. S. Fu, R. C. Gonzalez and C.S.G. Lee, "ROBOTICS: Control, Sensing, Vision and Intelligence", McGraw-Hill (1987).

^[8] J. J. Craig, "Introduction to Robotics: Mechanics and Control", 2nd edition, Addison-Wesley (1989).

Course Number	ME6211	
Course Credit	L-T-P-Cr : 3-0-0-3	
Course Title	Analysis of Welding Processes	
Learning Mode	Classroom Lecture	
Learning	Complies with PLO 1	
Objectives		
	This course aims to impart (a) the fundamental concepts and process details	
	of fusion and non-fusion welding processes, (b) analysis of the processes	
	focusing the role of process parameters, heat generation, heat distribution	
	and metallurgical aspects, (c) weld design and testing aspects of welded	
	joints.	
Course	This course is designed to fulfil the concepts, process behavior, and analysis	
Description	of various fusion and non-fusion welding processes, metallurgical aspects,	
_	and quality, testing of welded joints.	
	Prerequisite: Basic course on Manufacturing Processes that covers welding	
	processes or equivalent course	
Course Outline	Fundamentals of fusion welding – different arc welding techniques; Welding	
	power source: behavior, characteristics, analysis; Physics of Arc; Heat	
	generation, 2D/3D heat flow and heat transfer analysis; Physics and analysis	
	of metal transfer in arc welding, forces on metal pool; Process characteristics	
	of some common arc welding processes e.g. SMAW, TIG, GMAW, SAW	
	etc.; Concepts of flux activated welding, pulsed current welding.	
	Review of different non-fusion welding techniques; Analysis of heat	
	generation during friction, friction stir welding techniques; Fundamentals and	
	applications of other non-fusion welding etc.	
	Welding metallurgy: Heat flow, cooling rate and metallurgical	
	transformations, solidification and cracking; Phase transformations-weld	
	CCT diagrams; Welding of steels – Schaffler and Delong diagrams, Weld	
	metallurgy of Non-ferrous alloys.	
	Welding symbols and concepts of joint design; Weld defects; Joint quality	
	assessments by destructive and non-destructive testing.	
Learning	After completing the course, the students will be able to	
Outcome	(a) identify the process characteristics and behavior of fusion, non-fusion	
	welding processes,	
	(b) perform thermal analysis, and appraise the metallurgical changes in	
	welded joints,	
	(c) suitably design for the weld and assess the weld quality.	
Assessment	Mid Semester Examination, End Semester examination, Assignments and	
Method	Quiz	
Suggested Reading	gs:	
Text Books:		
[1] A.C. Davies	, The Science and Practice of Welding, Vol-2: The Practice of Welding;	
Cambridge U	Jniversity Press, 2002.	

[2] D. J. Hoffman, K. R. Dahle, D. J. Fisher, Welding; Pearson publication, 2017.

Reference Books:

- [1] R.W. Messler, Principles of Welding: Processes, Physics, Chemistry, and Metallurgy; John Wiley & Sons, 1999.
- [2] R. Little, Welding and Welding Technology, McGrawHill, 2017.
- [3] S. Kou, Welding Metallurgy, Second Ed., John Wiley & Sons, 2003.
- [4] Fundamentals of Welding, Welding Handbook, Part-I, American Welding Society, 1976.
- [5] Metals and their Weldability, Welding Handbook, Part-4, American Welding Society, 1982.

Course Credit L-T-P-Cr: 3-0-0-3 Course Title Fracture & Fatigue Learning Complex with PLOS 1, 3 and 4 Objectives To provide the analytical and mathematical concepts of fracture mechanics and its applications in wide range of engineering problems. Course This course discusses topics starting from Griffith's theory of brittle failures, linear clastic fracture mechanics: crack tip stress and deformation fields, Stress intensity factor (SIP) SIF and ERS; First order estimate of plastic zone using Irwin's and Dugdale approach; Elasto-plastic fracture: J-integral and CTOD, Mixed mode fracture; Experimental evaluation of Fracture Toughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue Iffe prediction. Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Introduction: Background; Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Tress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack in plastic zone ousing Irwin's and Dugd's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fractu	Course Number	ME6212
Course Title Fracture & Fatigue Learning Classroom Lecture Learning Comples with PLOs 1, 3 and 4 Objectives To provide the analytical and mathematical concepts of fracture mechanics and its applications in wide range of engineering problems. Course This course discusses topics starting from Griffith's theory of brittle failures, linear clastic fracture mechanics; travity stress intensity factors; Linear clastic fracture mechanics; crack tip stress and deformation fields, Stress intensity factor (SIF) SIF and ERR; First order estimate of plastic zone using Irwin's and Dugdate approach; Elisto-plastic fracture: Joughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Introduction: Background; Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane arack solution of stress and displacement field so plane arack in opening displacement. Nized mode fracture: Prediction of crack tap enal penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness, Elasto-plastic fracture mechanics: First ofder estimate of crack in plastic zone using Irwin's and Dugdie's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields)-Jintegral as fracture parameter and crack tip diplacement. Mixed mode fracture: Prediction	Course Credit	L-T-P-Cr : 3-0-0-3
Learning Description Classroom Lecture Complies with PLOS 1, 3 and 4 Objectives To provide the analytical and mathematical concepts of fracture mechanics and its applications in wide range of engineering problems. Course Description This course discusses topics starting from Griffith's theory of brittle failures, linear elastic fracture mechanics, Irwin's stress intensity factors; Linear elastic fracture mechanics: crack tip stress and deformation fields, Stress intensity factor (SIF) SIF and ERR; First order estimate of plastic zone using Irwin's and Dugdale approach; Elasto-plastic fracture: J-integral and CTOD, Mixed mode fracture; Experimental evaluation of Fracture Toughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisitie: Knowledge of solid mechanics or equivalent course (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness. Review of small strain plasticity. Crack to fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF an	Course Title	Fracture & Fatigue
Learning Complies with PLOs 1, 3 and 4 Objectives To provide the analytical and mathematical concepts of fracture mechanics and its applications in wide range of engineering problems. Course This course discusses topics starting from Griffith's theory of brittle failures, linear clastic fracture mechanics; reack tip stress intensity factors; Linear elastic fracture mechanics: crack tip stress and deformation fields, Stress intensity factor (SIF) SIF and ERR; First order estimate of plastic zone using Irwin's and Dugdale approach; Elasto-plastic fracture: l-integral and CTOD, Mixed mode fracture; Experimental evaluation of Fracture Toughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisite: Knowledge of solid mechanics or equivalent course Introduction: Bacterature mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugde's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness. Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prefequisite application of crack path and plane stress and plane elasticity. Crack closure, Determination of life of a cracked solid using plasticity, Crack closure, Determination of life of a	Learning Mode	Classroom Lecture
Objectives To provide the analytical and mathematical concepts of fracture mechanics and its applications in wide range of engineering problems. Course Description This course discusses topics starting from Griffith's theory of brittle failures, linear clastic fracture mechanics; track tip stress intensity factors; Linear elastic fracture mechanics; rack tip stress and deformation fields, Stress intensity factor (SIF) SIF and ERR; First order estimate of plastic zone using Irwin's and Dugdale approach; Elasto-plastic fracture: 1-integral and CTOD, Mixed mode fracture; Experimental evaluation of Fracture Toughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisite: Knowledge of solid mechanics or equivalent course (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack it plastic zone using irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness; Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness (K ₁₀), Measurement of J _{1C} , Measurement of plain strain fracture toughness (K ₁₀), Measurement of	Learning	Complies with PLOs 1, 3 and 4
and its applications in wide range of engineering problems. Course This course discusses topics starting from Griffith's theory of brittle failures, linear clastic fracture mechanics, trwin's stress intensity factors; Linear elastic fracture mechanics: crack tip stress and deformation fields, Stress intensity factor (SIF) SIF and ERR; First order estimate of plastic zone using Irwin's and Dugdale approach; Elasto-plastic fracture: J-integral and CTOD, Mixed mode fracture; Experimental evaluation of Fracture Toughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Introduction: Background; Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of rack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and IFRCU nucleastion and growth under cyclic loading, Crack closure, Determination of life of a c	Objectives	To provide the analytical and mathematical concepts of fracture mechanics
Course This course discusses topics starting from Griffith's theory of brittle failures, linear clastic fracture mechanics, Irwin's stress intensity factors; Linear elastic fracture mechanics: crack tip stress and deformation fields, Stress intensity factor (SIF) SIF and ERR; First order estimate of plastic zone using Irwin's and Dugdale approach; Elasto-plastic fracture: i-integral and CTOD, Mixed mode fracture; Experimental evaluation of Fracture Toughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Prerequisite: Knowledge of solid mechanics: or equivalent course Course Outline Prerequisite: Knowledge of solid mechanics: Tress field at the tip of a crack, solution of stress and displacement field for plane cracks growth, crack arrest Linear elastic fracture mechanics: Stress field St the plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness, Elasto-plastic fracture: prediction of crack part and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain situation and effect on fracture toughness: Elasto-plastic fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain		and its applications in wide range of engineering problems.
Course This course discusses topics starting from Griffith's theory of brittle failures, linear elastic fracture mechanics, irwin's stress intensity factors; Linear elastic fracture mechanics: crack tip stress and deformation fields, Stress intensity factor (SIF) SIF and ERR; First order estimate of plastic zone using Irwin's and Dugdale approach; Elasto-plastic fracture 1-integral and CTOD, Mixed mode fracture; Experimental evaluation of Fracture Toughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Course Outline Course and displacement field for plane cracks using comptex methods in plane elasticity. Stress intensity factor (SIF) or plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of rack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum nensy release rate criteria. Experimental measurement of SIF and fracture toughness; Minium strain energy density and Maximum energy release rate criteria. Learning Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. Ability to understand how material fails and ability to prevent such failures. Laboratory test		
Description Intear elastic fracture mechanics, Irwin's stress intensity factors; Linear elastic fracture: and Digital Concerns of the stress and deformation fields, Stress intensity factor (SIF) SIF and ERR; First order estimate of plastic zone using Irwin's and Dugdale approach; Elasto-plastic fracture: J-integral and CTOD, Mixed mode fracture; Experimental evaluation of Fracture Toughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Introduction: Background; Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensils stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of Crack closure, Determination of life of a cracked solid using Paris-	Course	This course discusses topics starting from Griffith's theory of brittle failures,
elastic fracture mechanics: crack tip stress and deformation helds, Stress intensity factor (SIF) SIF and ERR; First order estimate of plastic zone using Irwin's and Dugdale approach; Elasto-plastic fracture: J-integral and CTOD, Mixed mode fracture; Experimental evaluation of Fracture Toughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Introduction: Background; Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugde's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of Dian strain fracture toughness: Measurement of CIF idou for material fails and ability to prevent such failures. • Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics.	Description	linear elastic fracture mechanics, Irwin's stress intensity factors; Linear
Intensity factor (SIF) SIF and EKK, First order estimate of plastic Zone using Invin's and Dugale approach; Elastor-plastic fracture: J-integral and CTOD, Mixed mode fracture; Experimental evaluation of Fracture Toughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Introduction: Background; Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity. Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Minemum strain energy density and Maximum energy release rate criteria. Experimenta		elastic fracture mechanics: crack tip stress and deformation fields, Stress
Mixed mode fracture; Evacin, LassoPhastic facture, Fracture TorD, Mixed mode fracture; Experimental evaluation of Fracture Torughness, J integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Introduction: Background; Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness. Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdo		Intensity factor (SIF) SIF and ERR; First order estimate of plastic zone using
Integrals, Crack nucleation and growth, Fatigue crack growth theories, Fatigue life prediction. Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Introduction: Background: Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness. Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of plain strain fracture toughness: Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading. Understanding of fundamental concepts behind the failure of material and mathematical foundat		Mixed mode frequence: Experimental evaluation of Frequence Toughness. I
Integration Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Introduction: Background; Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of Drin argin fracture toughness: Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading. Learning Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. Ability to understand how material fails and ability to prevent such failures. Laboratory testing pro		integrals Crack nucleation and growth Eatigue crack growth theories
Prerequisite: Knowledge of solid mechanics or equivalent course Course Outline Introduction: Background; Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of J _{IC} , Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading. Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. Ability to predict the remaining life of the specimen/component. Learning Understanding of fundamental concepts behind the failure of material and m		Fatigue life prediction
Prerequisite: Knowledge of solid mechanics or equivalent courseCourse OutlineIntroduction: Background; Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning Outcome• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:Class tests, quiz, Project (Case Studies), Mid-semester and End		
Course Outline Introduction: Background; Griffith theory of fracture, energy release rate (ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic cone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading. Learning Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. Ability to understand how material fails and ability to prevent such failures. Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component. Suggested Readings: Text Books: Class tests, quiz, Project (Case Studies), Mid-semester and End semeste		Prerequisite: Knowledge of solid mechanics or equivalent course
(ERR), conditions for stable and unstable crack growth, crack arrest Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic cone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of plain strain fracture toughness (K _{IC}), Measurement of J _{IC} , Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading. Learning • Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component. Assessment Class tests, quiz, Project (Case Studies), Mid-semester and End semester Method	Course Outline	Introduction : Background; Griffith theory of fracture, energy release rate
Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of plain strain fracture toughness (K _{IC}), Measurement of J _{IC} , Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning Outcome• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:Eastory project (Case Studies), Mid-semester and End semester Examination. <td></td> <td>(ERR), conditions for stable and unstable crack growth, crack arrest</td>		(ERR), conditions for stable and unstable crack growth, crack arrest
of stress and displacement field for plane cracks using complex methods in plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of plain strain fracture toughness (K _{IC}), Measurement of J _{IC} , Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning Outcome• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:Class tests, quiz, Project (Case Studies), Mid-semester and End semester		Linear elastic fracture mechanics: Stress field at the tip of a crack, solution
plane elasticity. Stress intensity factor (SIF) for plane and penny shaped cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness. Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning Outcome• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:Class tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.		of stress and displacement field for plane cracks using complex methods in
Cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness.Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of plain strain fracture toughness (K _{IC}), Measurement of J _{IC} , Measurement of Critical COD.Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning Outcome• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.		plane elasticity. Stress intensity factor (SIF) for plane and penny shaped
Elasto-plastic fracture mechanics: First order estimate of crack tip plastic zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning Outcome• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:Class tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.		cracks, Embedded Cracks, Equivalence of SIF and ERR, fracture toughness.
Zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of plain strain fracture toughness (K _{IC}), Measurement of J _{IC} , Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning Outcome• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:•		Elasto-plastic fracture mechanics: First order estimate of crack tip plastic
Plane strain situation and effect on fracture toughness, Review of small strain plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR fields) J-integral as a fracture parameter and crack tip opening displacement. Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of plain strain fracture toughness (K _{IC}), Measurement of J _{IC} , Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning Outcome• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:•		zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and
Image: Plasticity crack up herds in an elasto-plastic material (Discussion on HKK fields) J-integral as a fracture parameter and crack tip opening displacement.Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria.Experimental measurement of SIF and fracture toughness:Measurement of plain strain fracture toughness (K _{IC}), Measurement of J _{IC} , Measurement of Critical COD.Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics.• Ability to understand how material fails and ability to prevent such failures.• Laboratory testing procedure of fracture parameters.Ability to predict the remaining life of the specimen/component.Assessment MethodExamination.Suggested Readings:Text Books:		plane strain situation and effect on fracture toughness, Review of small strain
Initials Initials Mixed mode fracture: Prediction of crack path and critical condition for crack extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of plain strain fracture toughness: Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading. Learning • Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component. Assessment Class tests, quiz, Project (Case Studies), Mid-semester and End semester Examination. Suggested Readings: Text Books:		fields) L integral as a fracture parameter and creak tip opening displacement
Image in the index fracture. Frequencies of the extension under mixed mode loading using Maximum tensile stress, Minimum strain energy density and Maximum energy release rate criteria. Experimental measurement of SIF and fracture toughness: Measurement of plain strain fracture toughness: Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading. Learning Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. Ability to understand how material fails and ability to prevent such failures. Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component. Assessment Method Class tests, quiz, Project (Case Studies), Mid-semester and End semester Examination. Suggested Readings: Text Books:		Mixed mode fracture: Prediction of crack path and critical condition for
Learning • Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. Learning • Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Assessment Class tests, quiz, Project (Case Studies), Mid-semester and End semester Examination. Suggested Readings: Text Books:		crack extension under mixed mode loading using Maximum tensile stress
Experimental measurement of SIF and fracture toughness: Measurement of plain strain fracture toughness (K _{IC}), Measurement of J _{IC} , Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading. Learning • Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component. Assessment Class tests, quiz, Project (Case Studies), Mid-semester and End semester Examination. Suggested Readings: Text Books:		Minimum strain energy density and Maximum energy release rate criteria
Image: Construction of the system of the		Experimental measurement of SIF and fracture toughness:
Measurement of Critical COD. Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading. Learning Outcome • Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component. Class tests, quiz, Project (Case Studies), Mid-semester and End semester Examination. Suggested Readings: Text Books:		Measurement of plain strain fracture toughness (K_{IC}), Measurement of J_{IC} ,
Fatigue crack growth: Mechanism of crack nucleation and growth under cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning Outcome• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:•		Measurement of Critical COD.
cyclic loading, Crack closure, Determination of life of a cracked solid using Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning Outcome• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:•		Fatigue crack growth: Mechanism of crack nucleation and growth under
Paris-Erdogan law and its variants, Variable amplitude cyclic loading.Learning Outcome• Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:•		cyclic loading, Crack closure, Determination of life of a cracked solid using
Learning OutcomeUnderstanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics.• Ability to understand how material fails and ability to prevent such failures.• Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.Assessment MethodClass tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:Image: Class test in the specime		Paris-Erdogan law and its variants, Variable amplitude cyclic loading.
Learning OutcomeUnderstanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics.• Ability to understand how material fails and ability to prevent such failures.• Ability to understand how material fails and ability to prevent such failures.• Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component.• Class tests, quiz, Project (Case Studies), Mid-semester and End semester Examination.Suggested Readings: Text Books:• Class tests, quiz, Project (Case Studies), Mid-semester and End semester		
 Learning Understanding of fundamental concepts behind the failure of material and mathematical foundation from mechanics. Ability to understand how material fails and ability to prevent such failures. Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component. Assessment Method Examination. Suggested Readings: Text Books: 		
Outcome and mathematical foundation from mechanics. • Ability to understand how material fails and ability to prevent such failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component. Assessment Method Suggested Readings: Text Books:	Learning	• Understanding of fundamental concepts behind the failure of material
 Ability to understand how material fails and ability to prevent such failures. Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component. Assessment Method Class tests, quiz, Project (Case Studies), Mid-semester and End semester Examination. Suggested Readings: Text Books: 	Outcome	and mathematical foundation from mechanics.
failures. • Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component. Assessment Class tests, quiz, Project (Case Studies), Mid-semester and End semester Method Examination. Suggested Readings: Text Books:		• Ability to understand how material fails and ability to prevent such
Laboratory testing procedure of fracture parameters. Ability to predict the remaining life of the specimen/component. Sugested Readings: Text Books: Text Books:		failures.
Ability to predict the remaining life of the specimen/component. Assessment Class tests, quiz, Project (Case Studies), Mid-semester and End semester Method Examination. Suggested Readings: Text Books:		• Laboratory testing procedure of tracture parameters.
Assessment Class tests, quiz, Project (Case Studies), Mid-semester and End semester Method Examination. Suggested Readings: Text Books:		Ability to predict the remaining life of the specimen/component.
Method Examination. Suggested Readings: Text Books:	Assessment	Class tasts auiz Project (Case Studies) Mid competer and End competer
Suggested Readings: Text Books:	Method	Fxamination
Text Books:	Suggested Reading	LAmmaton. 05°
	Text Books:	

[1] T.L. Anderson, Fracture mechanics fundamentals and applications; CRC Press: Florida, Fourth Edition, 2017.

Reference Book

- [1] C.T Sun and Z.H Jin, Fracture Mechanics; Elsevier: Oxford, First Edition, 2012.
- [2] Prashant Kumar, Elements of Fracture Mechanics, Tata McGraw Hill, New Delhi, India, 2009.
- [3] E. E. Gdoutos, Fracture Mechanics- An Introduction, Springer Netherlands, 1990.
- [4] D. Broek, Elementary Engineering Fracture Mechanics, Kluwer Academic Publishers, Dordrecht, 1986.
- [5] M. Janssen, J. Zuidema and R.J.H Wanhill, Fracture Mechanics, Spon Press, New York, 2005.
- [6] S. Suresh, Fatigue of Materials, Cambridge University Press, UK, 2003.